

Complementary LED Drive

Author: Jean-Claude Rebic Pioneer-Standard

INTRODUCTION

Light Emitting Diodes, or LED's, are discrete components able to produce light when a current passes through them. Most microcontroller designs use one or more LED's. This application highlights the utility of driving multiple LED's with a minimum number of I/O pins. Typically, each I/O drives or sources a single LED. To drive more than one, a high I/O count is required. In order to reduce I/O requirements, LED's are multiplexed in a matrix (as found on a keyboard). The complementary LED drive method proposes to implement even more LEDs while using fewer I/O.

LEDs are polarized and can only operate when current flows from anode to cathode (unlike a switch). We can therefore take advantage of this fact. Table 1 shows the number of possible LEDs with respect to the number of I/O pins required. Fifty-six LEDs can be driven using only 8 pins. The only drawback is that only one LED can be driven at a time.

Typical applications include; games, bargraphs, audio, video, or driving a single seven-segment LED display.

TABLE 1 NUMBER OF LEDS WITH RESPECT TO I/O COUNT

I/O pins	2	3	4	5	6	6	8
LEDs	2	6	12	20	30	42	56

erreur de Microchip : il faut lire "7"!

en fait la formule est :

(nb maxi de leds = nb de pins x nb de pins -1)

THEORY OF OPERATION

Some microcontrollers available today can sink high current, while others offer a limited number of pins to source high current. Microchip microcontrollers have a very flexible pin structure. When a pin is configured as an input, the input impedance is very high (typically 10 Mohm). When a pin is configured as an output, it can source 20 or 25 mA and sink 25 mA.

To have a better understanding of the application, place two diodes in parallel and reverse the polarities (that is, attach anode to cathode and vice-versa). If you apply 5 volts (with of course a limiting resistor) to one end and ground to another, only one LED will illuminate. The reason is, LED's are polarized and can operate only when current flows from anode to cathode.

Figure 1 gives an example of driving 12 LEDs using only 4 I/Os. To turn an LED on, first configure the appropriate register determining which pins are inputs and which are outputs. Then, write the appropriate voltages on the output pins. Each pin has a 200 ohm resistor to limit the current through the LED's, and since two pins are needed to drive one LED, the resistance is doubled.

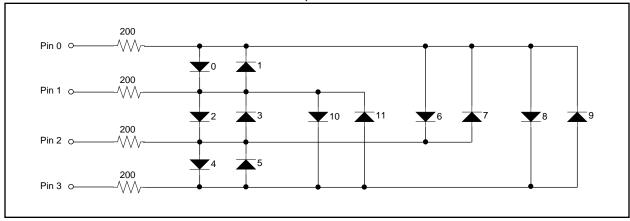


FIGURE 1: EXAMPLE OF LED PLACEMENT, RESULTING IN 12 LEDS FOR 4 PINS

There will always be numerous paths for the current to travel between two pins with this technique. Let's take LED 6 for instance (pin 0 and pin 2 configured as outputs, pin 1 and pin 3 configured as inputs; pin 0 is at 5 Vcc and pin 2 is at ground). There are three distinct paths that the current can take:

- Through LED 6
- Through LED 0 in series with LED 2
- Through LED 8 in series with LED 5

Only LED 6 will light up because all three paths have the same voltage drop and all LED's in the series do not have enough of a voltage drop to drive any current.

SPECIAL CONSIDERATIONS

The Complementary LED Drive technique will not work with an open collector output (for example pin RA4 on the PIC16CXX family). Care should be taken when sharing a port with other I/O functions, use a shadow register as a port buffer. Do all operations on the shadow register and write this buffer to the port. It is possible to drive more than one LED at a time, but care must be given in the design. For example, in Figure 1, LEDs 0 and 8 will work if pin 0 (Vcc), pin 1 (Gnd) and pin3 (Gnd) are outputs and pin 2 is an input.

MULTIPLE LEDS AT THE SAME TIME

Trying to turn on more than one LED at a time is a recurrent problem since the Complementary LED Drive technique only allows one LED at a time to be driven. The solution is to have a duty cycle scheme where each LED is turned on sequentially (4 LED's produce a 25% duty cycle). However, there is concern that this process will diminish the brightness level.

Normally, as we increase current flow through an LED, it's brightness increases until it reaches a point where the brightness will actually decrease. This is due to the anode-cathode junction overheating. By running short pulses through the LED at a higher current, we are able to minimize the overheating, and the peak luminosity increases (phenomenon used in GaAsP lasers). For instance, a 10 mA LED has the same intensity to a photometer as a 40 mA pulsed LED with a 25% duty cycle. Both instances produce the same luminosity when measureing the luminosity with a photometer.

Fortunately, the human eye doesn't act as a photometer. It can only combine the average brightness and peak brightness. Our earlier 40 mA example will therefore appear brighter than the 10 mA LED. To increase the current at the maximum rated value of the Microchip microcontroller, use the 25 mA sink/source capability. This pulsing technique is quite useful in battery applications. By pulsing a higher current with a smaller duty cycle, the visual brightness is maintained while consuming less power.

Certain precautions must be taken to use the pulsating technique. First, make sure the LED junction does not overheat, and second, do not dissipate more than the average maximum rated power of the LED.

To learn more about the LED properties in a multiplexed environment, please refer to Siemens Optoelectronics Data Book 1995-1996, Multiplexing LED Displays, Appnote3, p.11-10.

SOFTWARE

As complex as the hardware appears, the software is quite straight forward. Just clear all I/Os associated with the LEDs to remove all glitches. Then load the offset into the accumulator and call a table that configures the I/O TRIS register. Remember that pins configured as outputs will either source (anode of the selected LED) or sink (cathode of the selected LED) current, and all other pins will be configured as inputs. At this point, use the same offset to call a table with the appropriate voltages.

The code is a simple subroutine written for a PIC16C54. Figure 1 is located on PORTA, and a 200 ohm resistor is added for each pin.

CONCLUSION

The Complementary LED Drive will help minimize the number of pins required to drive LEDs in your design, thereby taking advantage of Microchip Technology's smaller 8-pin families.

APPENDIX A: SOFTWARE LISTING

```
Output_Led_
              PORTA
    clrf
                             ; Clear port all to 0
    movf
             Led_Value,w
                            ; Read LED pointer
    call
              Table_Tris_
                             ; Configure i/o direction
    trisa
                             ; Write to tris register
              Led_Value,w
                           ; Read LED pointer
    movf
              Table_Io_
                           ; Call table
    call
             PORTA
    movwf
                            ; Write to port
    retlw
Table_Io_
    addwf
             PCL,f
    retlw
              b'00100000'
                            ; Led 0
    retlw
              b'00000010'
                             ; Led 1
             b'00100000'
                             ; Led 2
    retlw
             b'00000001'
                            ; Led 3
    retlw
             b'00000010'
                            ; Led 4
    retlw
             b'01000000'
                            ; Led 5
    retlw
    retlw
             b'00000001'
                            ; Led 6
           b'00100000'
    retlw
                           ; Led 7
             b'00000010'
                           ; Led 8
    retlw
             b'00100000'
                            ; Led 9
    retlw
    retlw
             b'00000001'
                            ; Led 10
    retlw
             b'00000010'
                             ; Led 11
Table_Tris_
    addwf
             PCL,f
    retlw
           b'01000101'
                           ; Led 0
    retlw
           b'01000101'
                           ; Led 1
             b'00000111'
                           ; Led 2
    retlw
             b'01000110'
    retlw
                            ; Led 3
              b'00100101'
                             ; Led 4
    retlw
    retlw
              b'00100101'
                             ; Led 5
             b'00100110'
                             ; Led 6
    retlw
             b'01000101'
                            ; Led 7
    retlw
             b'01000101'
                            ; Led 8
    retlw
    retlw
           b'00000111'
                            ; Led 9
    retlw
           b'01000110'
                           ; Led 10
           b'00100101'
                           ; Led 11
    retlw
```


WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75248 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342

Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Hong Kong

Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431

Beijing

Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing 100027 PRC Tel: 86-10-85282100 Fax: 86-10-85282104

India

Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980

Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom Arizona Microchip Technology Ltd.

505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or intringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with express syntem approval by Microchip, No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.